

VIDYA BHAWAN, BALIKA VIDYAPITH

Shakti Utthan Ashram, Lakhisarai-811311(Bihar)

(Affiliated to CBSE up to +2 Level)

Class: IX

Subject: Mathematics

Date: 12/04/2021

(e)
$$\frac{1}{\sqrt{a^m}} = \sqrt{a^m}$$

(f)
$$\sqrt[p]{a^n \times a^m} = \sqrt[p]{a^{n+m}}$$

(g) $\sqrt[p]{(a^n)^m} = \sqrt[p]{a^{n.m}}$

- **16.** A surd which has unity only as rational factor is called a pure surd.
- **17.** A surd which has a rational factor other than unity is called a mixed surd.
- **18.** Order of a given surd can be changed by using following steps:
 - (a) Let the surd be $\sqrt[n]{a}$ a and m be the order of surd to which it has to be converted.
 - (b) Compute $\frac{\mathbf{m}}{\mathbf{n}}$ and let $\frac{\mathbf{m}}{\mathbf{n}} = \mathbf{p}$.
 - (c) Write $\sqrt{a} = \sqrt[m]{a^p}$ which is the required result.
- **19.** Surds having same irrational factors are called similar or like surds.

20. Only similar surds can be added or subtracted by adding or subtracting their rational parts.

21. Surds of same order can be multiplied or divided.

22. If the surds to be multiplied or to be divided are not of the same order, we first convert them to the same order and then multiply or divide.

23. If the product of two surds is a rational number, then each one of them is called the rationalising factor of the other.

e.g., $\sqrt[3]{2} \times \sqrt[3]{4} = 2$, then $\sqrt[3]{2}$ and $\sqrt[3]{4}$ are rationalising factors of one another.

24. A surd consisting of one term only is called a monomial surd.

25. An expression consisting of the sum or difference of two monomial surds or the sum or difference of a monomial surd and a rational number is called binomial surd.

e.g.,

$\sqrt{2} + \sqrt{5}, \sqrt{3} + 2, \sqrt{2} - \sqrt{3},$

etc., are binomial surds.

26. the binomial surds which differ only in sign (+ or -) between the terms connecting them, are called conjugate surd

e.g.,

$\sqrt{3} + \sqrt{2}$ and $\sqrt{3} - \sqrt{2}$

or $2 + \sqrt{5}$ and $2 - \sqrt{5}$ are conjugate surds.

27. Rational exponents:

- (a) If x, y be any rational numbers different from zero and m be any integer, then $x^m \times y^m = (x \times y)^m$.
- (b) If x be any rational number different from zero and m, n be any integers, then $x^m \times x^n = x^{m+n}$ and $(X^m)^n = x^{m \times n}$.

28. Reciprocals of positive integers as exponents:

If q be any positive integer other than 1, and x and y be rational numbers such that $x^{q} = y$ then $y^{1/q} = x$. We write $y^{1/q}$ as $y^{1/q}$ as $\sqrt[q]{y}$ and read it as qth root of y. $\sqrt[q]{y}$ is called a radical and q is called the index of the radical.

29. Positive rational numbers as exponents:

If $\underline{\mathbf{p}}$ be any positive rational number (where p and q are positive integers prime to each other)

andlet x be any rational number. We have already given a meaning to $x^{p/q}$. This can be done very easily.

That is $x^{p/q}$ is the qth root of x^p .

Thus, $(4)^{3/2} = (4^3)^{1/2} = (64)^{1/2} = 8$.

30. If $\frac{\mathbf{p}}{\mathbf{q}}$ is a negative rational number, then $x^{p/q}$ (x \neq 0) is equal to $\frac{1}{\sqrt{-p/q}}$.

31. If x be any rational number different from zero, and a and b be any rational numbers, then $x^a \div x^b = x^{a-b}$.

Remember above the points